11,530 research outputs found

    Chemical Abundances from the Continuum

    Full text link
    The calculation of solar absolute fluxes in the near-UV is revisited, discussing in some detail recent updates in theoretical calculations of bound-free opacity from metals. Modest changes in the abundances of elements such as Mg and the iron-peak elements have a significant impact on the atmospheric structure, and therefore self-consistent calculations are necessary. With small adjustments to the solar photospheric composition, we are able to reproduce fairly well the observed solar fluxes between 200 and 270 nm, and between 300 and 420 nm, but find too much absorption in the 270-290 nm window. A comparison between our reference 1D model and a 3D time-dependent hydrodynamical simulation indicates that the continuum flux is only weakly sensitive to 3D effects, with corrections reaching <10% in the near-UV, and <2% in the optical.Comment: 10 pages, 5 figures, to appear in the proceedings of the conference A Stellar Journey, a symposium in celebration of Bengt Gustafsson's 65th birthday, June 23-27, 2008, Uppsal

    A Reappraisal of the Solar Photospheric C/O Ratio

    Full text link
    Accurate determination of photospheric solar abundances requires detailed modeling of the solar granulation and accounting for departures from local thermodynamical equilibrium (LTE). We argue that the forbidden C I line at 8727 A is largely immune to departures from LTE, and can be realistically modeled using LTE radiative transfer in a time-dependent three-dimensional simulation of solar surface convection. We analyze the [C I] line in the solar flux spectrum to derive the abundance log epsilon(C)= 8.39 +/- 0.04 dex. Combining this result with our parallel analysis of the [O I] 6300 A line, we find C/O=0.50 +/- 0.07, in agreement with the ratios measured in the solar corona from gamma-ray spectroscopy and solar energetic particles.Comment: 5 pages, 2 figures, to appear in ApJL July 1

    Oxygen Abundances in Nearby FGK Stars and the Galactic Chemical Evolution of the Local Disk and Halo

    Get PDF
    Atmospheric parameters and oxygen abundances of 825 nearby FGK stars are derived using high-quality spectra and a non-LTE analysis of the 777 nm O I triplet lines. We assign a kinematic probability for the stars to be thin-disk (P1), thick-disk (P2), and halo (P3) members. We confirm previous findings of enhanced [O/Fe] in thick-disk (P2>0.5) relative to thin-disk (P1>0.5) stars with [Fe/H]<-0.2, as well as a "knee" that connects the mean [O/Fe]-[Fe/H] trend of thick-disk stars with that of thin-disk members at [Fe/H]>-0.2. Nevertheless, we find that the kinematic membership criterion fails at separating perfectly the stars in the [O/Fe]-[Fe/H] plane, even when a very restrictive kinematic separation is employed. Stars with "intermediate" kinematics (P1<0.7, P2<0.7) do not all populate the region of the [O/Fe]-[Fe/H] plane intermediate between the mean thin-disk and thick-disk trends, but their distribution is not necessarily bimodal. Halo stars (P3>0.5) show a large star-to-star scatter in [O/Fe]-[Fe/H], but most of it is due to stars with Galactocentric rotational velocity V-200 km/s follow an [O/Fe]-[Fe/H] relation with almost no star-to-star scatter. Early mergers with satellite galaxies explain most of our observations, but the significant fraction of disk stars with "ambiguous" kinematics and abundances suggests that scattering by molecular clouds and radial migration have both played an important role in determining the kinematic and chemical properties of solar neighborhood stars.Comment: ApJ, in press. Complete tables 2-6 are available in the source (Download: Other formats -> Source

    Type Ia Supernovae with Bi-Modal Explosions Are Common -- Possible Smoking Gun for Direct Collisions of White-Dwarfs

    Full text link
    We discover clear doubly-peaked line profiles in 3 out of ~20 type Ia supernovae (SNe Ia) with high-quality nebular-phase spectra. The profiles are consistently present in three well-separated Co/Fe emission features. The two peaks are respectively blue-shifted and red-shifted relative to the host galaxies and are separated by ~5000 km/s. The doubly-peaked profiles directly reflect a bi-modal velocity distribution of the radioactive Ni56 in the ejecta that powers the emission of these SNe. Due to their random orientations, only a fraction of SNe with intrinsically bi-modal velocity distributions will appear as doubly-peaked spectra. Therefore SNe with intrinsic bi-modality are likely common, especially among the SNe in the low-luminosity part on the Philips relation (\Delta m15(B) >~ 1.3; ~40% of all SNe Ia). Such bi-modality is naturally expected from direct collisions of white dwarfs (WDs) due to the detonation of both WDs and is demonstrated in a 3D 0.64 M_Sun-0.64 M_Sun WD collision simulation. In the future, with a large sample of nebular spectra and a comprehensive set of numerical simulations, the collision model can be unambiguously tested as the primary channel for type Ia SNe, and the distribution of nebular line profiles will either be a smoking gun or rule it out.Comment: To be published by MNRAS Letters. Minor changes of the main text, an Appendix adde
    corecore